If it's not what You are looking for type in the equation solver your own equation and let us solve it.
49x^2+14x=12
We move all terms to the left:
49x^2+14x-(12)=0
a = 49; b = 14; c = -12;
Δ = b2-4ac
Δ = 142-4·49·(-12)
Δ = 2548
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2548}=\sqrt{196*13}=\sqrt{196}*\sqrt{13}=14\sqrt{13}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(14)-14\sqrt{13}}{2*49}=\frac{-14-14\sqrt{13}}{98} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(14)+14\sqrt{13}}{2*49}=\frac{-14+14\sqrt{13}}{98} $
| 2(4-x)=2x+6-3x | | 10m+3m+6=9 | | 7x+12=x+3+(x+4) | | 3x÷40=20÷30 | | 5=3a=-4 | | 6(x+3)-4(x-1)=0 | | 2a-90=a+27 | | 9p+8=-5 | | 6(x-4)=3(2x-7)-3 | | 3t-42=5t-84 | | 1-3x-7x=-7x-11 | | 2v-27=v | | 2u=3u-65 | | 0=2x^2-53 | | d(d−2)=0 | | t(t-16)=0 | | 3/r=12/22 | | a=4a-57 | | 5z-59=6z-76 | | 5z-59=6z-7 | | 4x2-9=-2x2+45 | | 9.05+h=12.2 | | 162+4-2x=180 | | 40=3x+8 | | 3x+92=x−43 | | -27=9(h−99) | | 5+3×=3+5x | | 3x+5÷4=2 | | 7x+28=6x+29 | | 91/4=5d | | 24+2/3t=4/3(t-2) | | 8^x=58 |